[A Unit of Vivekananda Vidyavardhaka Sangha Puttur ®] Affiliated to VTU, Belagavi & Approved by AICTE New Delhi

CRM08 Rev 1.11 ME 26/08/2022

CONTINUOUS INTERNAL EVALUATION - 3

Dept: ME	Sem / Div: 4 A	Sub: KINEMATICS OF MACHINES	S Code: 18ME44
Date: 02/09/2022	Time: 1:00pm-2:30pm	Max Marks: 50	Elective: N

Note: Answer any 2 full questions, choosing one full question from each part.

QN	Questions	Marks	RBT	CO's
PART A				
1 a	Derive an expression for Analytical Synthesis of Four Bar Mechanism (Freudenstein's Equation)	10	L2	CO3
	Crank OA of a compund slider crank mechanism as shown in fig, rotates at 20rpm. Anticlockwise and gives motion to sliding blocks B and D. The dimensions of various links are OA = 300mm, AB = 1200mm, BC = 450mm and CD = 450mm. Determine the linear acceleration of block D.		L2	CO3
	OR			
8 2	Write a short note on Synthesis Process and also describe three methods involved in Synthesis Process.	10	L2	CO3
b	Explain the Coriolis Component and derive an expression for the Coriolis Component of Acceleration	15	L3	CO3

	PART B			
3 a	Derive an expression to find Length of Path of Contact in Spur Gear profile.			CO5
b	Two involute gears with number of teeth 28 and 45 are in mesh. If they have standard addendum a = 1module and pressure angle is 20 degree find the following: a. Path of Approach, b. Path f Recess, C. Contact Ratio d. Angle of Approach for pinion if pinion is driver. Assume module = 3mm.		L2	COS
	OR			
4 a	With a neat sketch write a short note on Gear Terminology.	10	L2	CO5
b	Derive an Expression for minimum number of teeth on Gear and Pinion to avoid interference	15	L2	CO5

Prepared by: Sudarshan M L

HOD

Page: 1 / 1